

Digital Technologies as Enabler for Resource Efficiency and Circular Economy

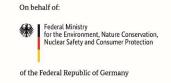
© Ansgar van Treeck

Wei Min Wang Technology Consultant, VDI Technology Centre GmbH 13th German-Japanese Environment and Energy Dialogue Forum Kawasaki, 26.01.2024

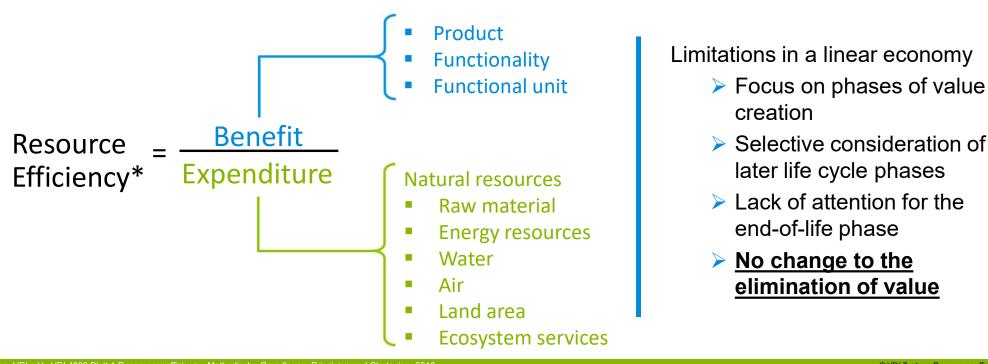
© VDI Zentrum Ressourceneffizienz

Page 1 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang

VDI Centre for resource efficiency (VDI ZRE)



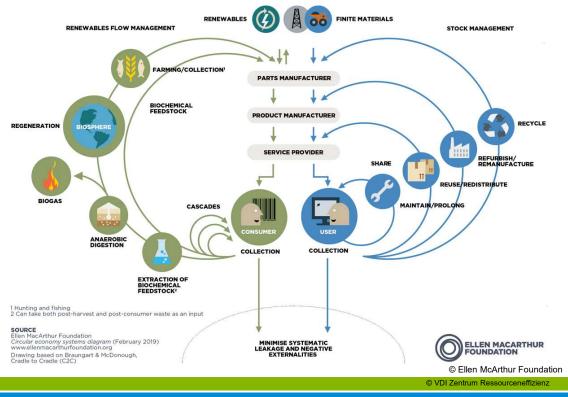
- Competence centre for demand-oriented provision of technical resource efficiency knowledge for SMEs
- Focus on resource efficiency in industrial practice through connection to the VDI
- Setting standards by developing VDI guidelines on resource efficiency in cooperation with VDI e. V.


© VDI Zentrum Ressourceneffizienz

Page 2 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang

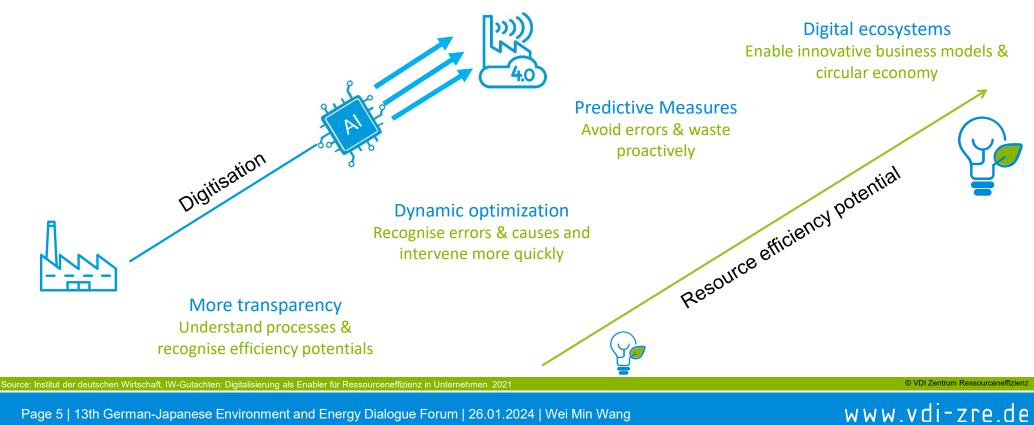
Resource efficiency and current limitations

Page 3 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang


© VDI Zentrum Ressourceneffizienz

Resource efficiency through circular economy

- Increase benefit by conservation of created value (products)
 - Extend useful life of products
 - Intensify usage
- Decrease resource expenditure
 - Use refurbished or remanufactured products and parts
 - Recover raw materials through recycling



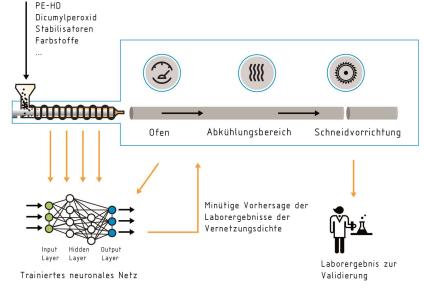
Page 4 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang

Potentials of digital technologies for resource efficiency

Drivers for resource efficiency and circular economy – Business

Growing public demand for a climate friendly economy Volatile supply chains & resource availability

Increasing costs for raw material & energy © VDI Zentrum Ressourceneffizienz


Page 7 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang

Application example – Neural network for predictive quality Production of HDPE pipe systems

- Problem: Determination of the cross-linking density of the material using laboratory tests takes up to 48 hours
 - > No delivery to customers until results are available
 - The entire batch (up to 4.000 m) is scrapped in the case of defects
 - 10-20 % scrap on average
- Solution: Neural network predicts the cross-linking density every minute with 98.5 % accuracy
 - Real-time adjustments reduce scrap rate
 - Amortisation within six months (60.000 EUR)

Solution by altan-tec Systems GmbH

urce: VDI ZRE. Potentials of weak artificial intelligence for operational resource efficiency. 2021

Page 8 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang



Application example – Product optimisation for the use of recyclats

Production of three-layer plastic barrels with extrusion blow moulding system

- Problem: Use of recycled material is difficult due to fluctuating quality
 - > Limited use of recycled material
- Solution: Development of a digital twin of the spiral mandrel distributor to combine virgin and recycled plastics
 - Optimisation through the use of Alsupported evolutionary algorithms and simulations
 - Use of up to 85% recycled plastics

Solution by IANUS Simulations GmbH and BBM Maschinenbau und Vertriebs GmbH

ource: VDI ZRE, Recycling plastics 4.0: Artificial intelligence and digital twin save resources, 2021, online: https://youtu.be/gOsVjdZZCOg?si=XOif8Kgr_u-TJ_sW

Page 9 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang

Application example – Al support for sustainability management

Data-based performance controlling, reporting and AI-based action recommendation

- Problem: Continuous management of corporate sustainability performance
 - Uncertainty regarding KPIs and relevant data
 - Additional compliance reporting
 - Lack of strategic planning for further actions
- Solution: Guided data acquisition process with predefined key indicators
 - Comprehensive performance analysis
 - Al-based recommendation of sustainability actions
 - Automated generation of reporting for legal obligation and public communication

VDI Zentrum Ressourceneffizienz

Page 10 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang

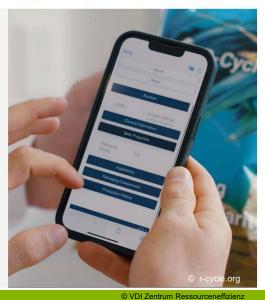
Ressourceneffizienz

On behalf of:

Application example - Digital product passport

Improve circularity of plastic products

- **Development & provision of** infrastructure services for DPP based on the GS1-Standard
- Combination of digital watermarks and data platform service*
 - Enables continuous flow of product data
 - Improves the recognition and sorting of plastics
 - Enables the high-quality use of recycled plastic products, e.g. for the food sector

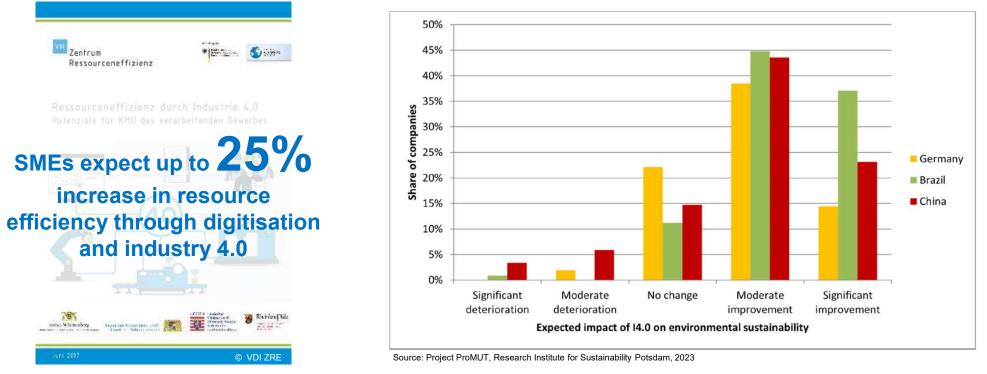

Renefits & Solutions Digital Product Passport Community Success Stories

The Digital Product Passport

R-Cycle provides a data infrastructure for the operation of digital product passports (DPP for short) for plastic products. A DPP is a system for collecting, aggregating and providing data on a product along its life cycle.

C∕⊃ R-Cycle

R-Cycle is not a concept - it is a working solution. We have an interoperable infrastructure that is offered as a software-as-a-service accessible to any manufacturing, converting, sorting or recycling facility throughout the lifecycle of plastics. Combined with our experience from the R-Cycle community, this is your path to datadriven, efficient and sustainable value creation processes in terms of a true circular economy.



Page 11 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang

Zentrum Ressourceneffizienz

Conclusion - Potentials of digital technologies

© VDI Zentrum Ressourceneffizienz

Page 12 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang

Conclusion - Barriers for SMEs to introduce digital technologies **KNOW-HOW** TIME FUNDING REGULATIONS

Technological	Social
🕼 Lack of database	Lack of know-how 🚯
High implementation effort	Difficulties in identifing suitable technologies
Lack of technical infrastructure	Lack of trust in the company 🔘
🛞 Unclear definition of the term `AI'	Monopolisation of knowledge 😡
Intransparency of used methods and results	Corporate strategy
Ecological	Lack of support from A Corporate management
To date: little research into the ecological impact of Al	Data security concerns
Cause of high CO ₂ emissions in the development of Al methods	Low technology acceptance in the corporate culture
Frade-offs between economic and ecological goals	Risk of a loss of knowledge to service companies
Economic	Insufficient expectation management
Loss of customer trust	Regulatory
High costs	Uncertainties regarding 👔 👔
Source: VDI ZRE. Potentials of weak artificial intelligence for operational resource efficiency. 2021	

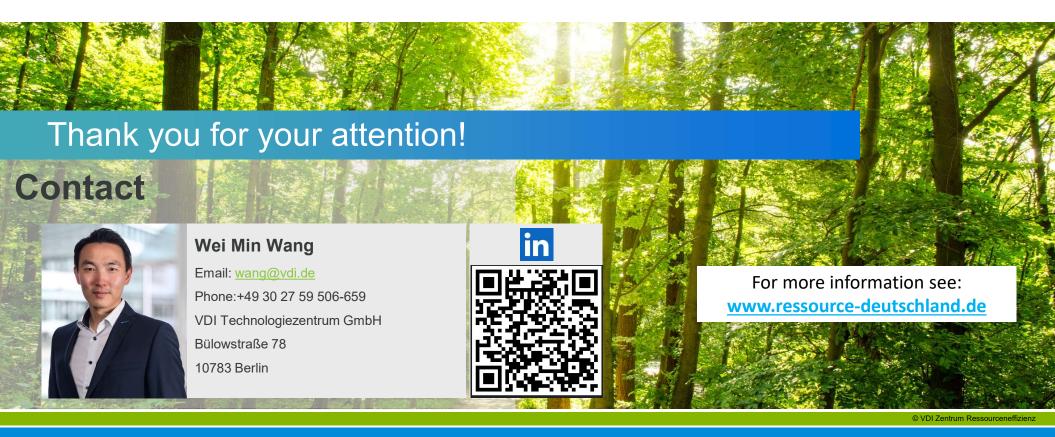
Page 13 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang

Conclusion – Examples of funding activities of the German BMUV

- Focus on SMEs and implementation of practical solutions
- Funding priorities:
 - Digital optimization of production processes
 - Digital optimization of product design
 - Digital business models for resource efficient and circular value creation
- Planned from 2022 2024 (but funding exhausted after three calls)

Green-Al Hub Mittelstand

Eine KI-Initiative des Bundesumweltministeriums


- Identifies the potential of AI for efficient processes
- Develops prototype solutions together with SMEs
- Offers mobile consulting and demonstration services
- Helps to save resources & costs for energy, raw materials, waste & repairs with AI
- Enables networking and direct exchange with Al developers

© VDI Zentrum Ressourceneffizienz

of the Federal Republic of Germany

Page 15 | 13th German-Japanese Environment and Energy Dialogue Forum | 26.01.2024 | Wei Min Wang