

Microwave Chemical

Chemical Recycling by Microwave Technology

26th January 2024

Microwave Chemical Co., Ltd.

Transitioning from Fossil Fuels to the Era of Electricity

A Key Player to Realize Industrial Electrification

Microwave

Microwave transfers energy to the only target material directly, selectively and rapidly

Normal Heating (external heating) Microwave Heating (internal heating)

Benefits of Adopting Microwave Technology

Benefits of Adopting Microwave Technology

We can develop novel, high-quality materials whose manufacturing was previously not possible.

Silver nanowires

Nanoparticles

Benefits of Adopting Microwave Technology

<u>03</u> Impact on Carbon Neutral Product

CO₂ emissions reductions achieved

Challenges in Industrial Applications of Microwaves

In the chemical industry, valuable experimental results utilizing microwaves have been extensively reported in scientific papers since the 1980s. However, due to the nature of 'waves,' controlling and scaling up (upsizing) at the industrial level has been challenging, making commercialization difficult.

The Challenges of Control in Manufacturing Processes

Addressing These Challenges Through Our Unique Approach

We poured a huge amount of time and effort into creating the following two designs that defied the convention.

The World's First Industrialization of Microwave Chemical Processes.

We have successfully demonstrated manufacturing at a scale of 3,300 tons per year, complying with regulations.

Application Examples

PlaWave® - Technology Platform for Chemical Recycling -

We have established a versatile technology platform for a variety of plastic types and samples.

Reaction Design for Plastics with High MW Absorption Capacity

Pyrolysis of PMMA by Microwave

PMMA is heated by microwave without fillers because PMMA has high microwave absorption capacity.

Reaction Design for Plastics with Low MW Absorption Capacity

PlaWave for Pyrolysis and Solvolysis

Reaction Design should be changed according to the target material and product

Direct Monomerization by PlaWave and Product Creation

MW Depolymerization Factor

- Microwave (frequency, output and etc.)
- ✓ MW filler (type, quantity and etc.)
- ✓ Others (atmosphere, pressure and etc.)

Decomposition products can be created separately by abundant control factors

Image of Products from Depolymerization by PlaWave

Examples of Solvolysis

Microwave irradiation causes the plastics to decompose and the solvent to form two layers
The target decomposition products are extracted from the upper and lower layers, respectively.

Advantages of PlaWave

- Advantages of Microwave Pyrolysis
- 1 High Cyclicity: Mixed plastics can be decomposed
- 2 High Productivity : Short process time, high yield/selectivity, low energy cost and small footprint
- 3 Safety : Precise temp control and the nature of microwave can lower explosion and combustion risk

Process	Cyclicity	Productivity					
	Mixed Plastic	Process Time	Yield	Selectivity	Energy Cost	Foot Print	Safety *
Conventional Pyrolysis	Possible	Slow	Low	Low	High	Large	Normal
Depolymerization	Impossible	High to Slow	High	Low	High	Large	Normal
PlaWave	Possible	High	High	High	Low	Small	Good

* MW does not heat gas and oil from plastics therefore combustion risk is low

Bench and Pilot Facility of PlaWave

Examples of Chemical Recycling Projects

	Partner company	Target Plastic	Status	
1	Mitsubishi Chemical	PMMA	Large-scale demo from FY2021 Planned commercialization in FY2025	
2	Mitsui Chemicals	ASR (automobile shredder residue)	Small-scale demo from FY2021	
3	Mitsui Chemicals	SMC (sheet molding compound)	Small-scale demo from FY2021	
4	Mitsui Chemicals	Soft Polyurethane Foam	Small-scale demo from FY2022 Planned commercialization in FY2025	
5	RESONAC	Recycled plastic containers and packaging	Fundamental development in FY2021	
6	Seven-Eleven Japan	Polystyrene, Polypropylene etc.	A small-scale distributed system demo by FY2025	
7	Asahi Kasei	Polyamide 66	Small-scale demo from FY2023 Planned commercialization in FY2025	

Furthermore, we are advancing several projects simultaneously..

PMMA (Acrylic Plastic) with Mitsubishi Chemical

MITSUBISHI X Decomposition of acryl resin

HONDA

Circular Economy

External heating requires a heat source above the temperature of the object to be heated and requires large equipment. Microwaves can heat directly from the inside, which not only makes the device smaller and more energy efficient, but also improves safety because the device does not need to be heated above the temperature of the object to be heated

Packaging Plastic with Resonac

Joint development of microwave-based chemical recycling technology to directly decompose used plastic into basic chemicals such as ethylene and propylene.

- MWCC will utilize microwave based plastic decomposition platform "PlaWave" to deal with various waste derived from containers and packaging goods.
- Resonac has been engaged in chemical recycling operations since 2003 at Kawasaki Plant, producing clean hydrogen and ammonia through thermal decomposition.

Collaboration Achievements

MWCC's Business Model of Chemical Recycling

Centralized and Distributed System

PlaWave enables an optimal recycling model by combining a large centralized system and a small distributed system.

High Selectivity

By selecting a decomposition process tailored to the target decomposition products, we can improve purity and achieve high yields.

High Efficiency

By directly and rapidly transferring energy to the target material, we can achieve chemical recycling with less energy consumption.

Space-Saving

Combining high-speed processing using microwaves with compact utility facilities allows for space-saving.

Large-scale Centralized and Small-scale Distributed System

We aim to make an optimal recycling model by combining a large centralized system and a small distributed system by using PlaWave

Microwave Chemical

Small & Distributed Model with Seven Eleven Japan

Awarded the Osaka Prefecture "Carbon Neutral Technology Development and Demonstration Program" together with Seven-Eleven Japan for distributed recycling system.

- Most of the chemical recycling project is "large-scale centralized system" with capacity of thousands to tens of thousands of tons per year.
- This project focuses on "distributed system".
- Project focuses on building highly efficient eco-system.

Microwave Chemical

世界が知らない世界をつくれ

Microwave Chemical

Thank you for your attention

Contact: Ryuichi Iwata General Manager in Fundamental Research Div. Microwave Chemical <u>riwata@mwcc.jp</u>